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Resonant emergence of global and local spatiotemporal order in a nonlinear field model
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~Received 12 September 2002; published 23 December 2003!

We investigate the nonequilibrium evolution of a scalar field in~211! dimensions. The field is set in a
double-well potential in contact~open! or not ~closed! with a heat bath. For closed systems, we observe the
synchronized emergence of coherent spatiotemporal configurations, identified with oscillons. This initial global
ordering degenerates into localized order until all oscillons disappear. We show that the synchronization is
driven by resonant parametric oscillations of the field’s zero mode and that local ordering is only possible
outside equipartition. None of these orderings occur for open systems.
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The emergence of spatiotemporal ordered structure
nonlinear systems is an ideal laboratory for investigating
trend toward complexification observed in nature at
physical, chemical, and biological level@1#. For these or-
dered structures to survive, they must interact with an ex
nal environment, which maintains the local nonequilibriu
conditions. Examples can be found in hydrodynamics, in n
works of chemical reactions@2#, and in living organisms@3#.

In field theory and cosmology, most of the interest in
dered configurations has focused on topological or nonto
logical static solutions of the equations of motion@4#. An
exception to this trend are oscillons, long-lived tim
dependent localized field configurations that have been fo
in field theory@5,6#, soft condensed-matter systems@7#, and
stellar interiors@8#. Here, we show how oscillons spontan
ously emerge as a nonlinear scalar field approaches the
equilibrium. We observe not only the local emergence
spatiotemporal order~oscillons!, but also that this emergenc
is initially synchronized~global!. Our results are applicabl
to any system modeled by a scalar order parameterf with
amplitude-dependent nonlinearities, if its potentialV(f) sat-
isfies]2V/]f2,0 for a range off.

Consider a 211-dimensional real scalar fieldf(x,t),
which evolves under the equation of motion

]2f

]t2
2¹2f52

]Vdw

]f
. ~1!

The double-well potentialVdw(f)5 1
4 (f221)2 has minima

at f561. It has been shown that this system can gene
oscillons, characterized by a persistent oscillatory beha
at their core@5#. To see this, prepare the field with a Gauss
profile, f(r )5faexp(2r2/R2)21, and let it evolve via Eq.
~1!. All that is needed is thatVdw9 (fa),0 and that the initial
radius R be larger than a bifurcation valueRosc @5,9#. The
properties of these so-called deterministic oscillons h
been extensively studied in two@9,11# and three dimension
@5,10#.
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We investigate open~canonical! and closed~microcanoni-
cal! systems. In both cases, the field is initially thermaliz
in a single-well potentialVsw(f)5(f11)2, symmetric
aboutf521, chosen so thatVsw9 (21)5Vdw9 (21). The ther-
malization is achieved by coupling the field to an extern
heat bath via a Langevin equation

]2f

]t2
1g

]f

]t
2¹2f52Vsw8 ~f!1j, ~2!

where the viscosity coefficientg is related to the stochasti
force of zero meanj(x,t) by the fluctuation-dissipation re
lation (kB51 and T is the temperature of the heat bath!,
^j(x,t)j(x8,t)&52gTd2(x2x8)d(t2t8). The simulation is
implemented on a square lattice with periodic boundary c
ditions, using a staggered leapfrog method, withdx50.1 and
dt50.01 and 1024 lattice sites per side. The coupling to
heat bath continues until equipartition is satisfied at tempe
ture T. Results are ensemble averages from 50 indepen
realizations, which, given the large number of degrees
freedom, have energyE within DE/E,1023.

The potential is then switched fromVsw to Vdw , and the
system is tossed again out of equilibrium. This switch can
interpreted as an instantaneous quench on the system, im
mented by varying some control parametera, as is custom-
arily done in many applications. To see this, shiftf→f
11 so thatVsw5f2 and Vdw5 1

4 @f2(af22)2ua51. Note
that whena50, Vdw5Vsw. The quench then occurs instan
taneously by sendinga50 to a51 ~or equivalently,Vsw
→Vdw).

For the closed system the coupling to the bath is remo
at the time of the switch~by settingg50!, while for the open
system it is kept on throughout the simulation. After t
switch occurs, energy exchange between the nonline
coupled modes will again drive the system to equipartitio
~We note that the initial and final equilibrium temperatur
never differ more than;0.15%. Thus, each experiment
referred to by its initial thermalization temperature.! For
open systems, equilibrium is attained within a time scale
O(g21), without any emergence of ordered configuratio
This is in marked contrast with closed systems.

Figure 1~lower half! shows the area-averaged fieldfav(t)
for closed systems at various initialization temperatures. T
©2003 The American Physical Society03-1
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time is set so that the switch to the double-well poten
occurs att50. Note thatfav(t) displays damped oscilla
tions, indicating that the zero mode of the field transfers
energy to higher modes until it reaches its temperatu
dependent final equilibrium valuêf&T . At low tempera-
tures, such asT50.1, the oscillations have small amplitud
and remain nearly periodic. At higher temperatures, such
T50.2, fav(t) oscillates beyond the left inflection point an
fluctuations in the field probe the unstable region of
double-well potential. This can also be seen in the upper
of Fig. 1, where the time evolution of the fraction of the fie
above the inflection pointf inf(t) is shown. For temperature
aboveT.0.185, over half the field probes the unstable
gion. For even larger temperatures,T*0.25, the whole field
goes above the inflection point, signaling the approach
criticality. Above this temperature the field separates i
large, slowly evolving thin-walled domains.~The critical
temperature of this system, wherefav→0, is Tc.0.270
60.005.!

Figure 2 shows a sequence of snapshots of the fieldT
50.2, spanning in time about half an oscillation period of
oscillon. In order to generate this figure and relate the em
gent configurations to oscillons, the field is smoothed with
optimal ~Wiener! filter @12#. This filtering technique is espe
cially useful in our situation, since its implementation r
quires knowledge of the unwanted thermal noise in the s
tem. With our choice of thermal initial conditions
Boltzmann statistics provides us with the power spectrum
the beginning of the experiment,̂uf(k,t50)u2&5T/(k2

12), which is to be removed by the filter. Throughout t
experiment, only modes with 0,uku&0.8 amplify above the
noise, sometimes by as much as two orders of magnit
Their spectrum has a shape and width that coincide w
those of deterministic oscillons. The transformation back i
real space clearly reveals the emergence of localized
configurations within a smooth background.

With the filtered field, we can catalog and track the loc
tion of all local extrema at each instant in time, the va
majority of which are seen to correspond to the centers
localized configurations. We then measure the value of
field at each extrema and the corresponding configura
radius~at half maximum!. With ample sorting, we compile a

FIG. 1. Bottom: lattice-averaged field for various temperatur
Top: fraction of the field above the inflection point.
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library containing each large-amplitude fluctuation duri
the entire evolution of the system (0,t,1500), from which
we can obtain their nucleation times, sizes, periods of os
lation, and lifetimes. A deterministic oscillon is characteriz
both by its large-amplitude oscillations~the field at its core
probes the positive half of the potential,fa.1) and its ex-
treme longevity. We thus establish two criteria to select
subset of all configurations which correspond to oscillo
they must have a maximum amplitude above the backgro
satisfyingfa.1 and they must survive for at least ten osc
lations (t.60).

The inset in Fig. 3 shows the probability distribution fun
tions for the radiiR and periods of oscillation,P, for all the
oscillons present throughout the simulations, with binwid
dR5dP50.1. The fitted curves are Gaussian functions w
centersR052.86 andP056.12 and widthssR50.33 and
sP51.19, respectively.

.

FIG. 2. Snapshots displaying synchronous emergence of o
lons in the two-dimensional field, starting att515.5 and spanning
half the period of an oscillon. Simulations can be viewed
Ref. @14#.

FIG. 3. The number of oscillons nucleated betweent and t
1dt at T50.2, with dt51. The global emergence is evident ear
in the simulations. Inset: the probability distribution of radii an
periods of oscillation.
3-2
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In Fig. 3 we also show the distribution of nucleation tim
for these oscillons atT50.2. This function gives the numbe
of oscillons nucleated betweent andt1dt, with dt51. The
sharp peaks at early times,t,60, correspond to the synchro
nous emergence of oscillons, while fort.60 this global or-
dering gives way to local ordering, with oscillons emergi
at arbitrary times with similar probability. This local eme
gence disappears att*500 ~discussed below!. Notice the
correlation between the nucleation activity of oscillons a
the energy loss from the zero mode~Fig. 1! at early times.
This is observed for all temperatures within 0.185&T
&0.25.

To understand the origin of this synchronous emergen
we decompose the field asf(x,t)5fav(t)1df(x,t) and
first investigate the behavior offav(t), prior to relinquishing
its energy to higher modes, by approximatingdf(x,t) as
remaining statistically equivalent to its initial symmetr
state. Upon substituting this form off(x,t) into Eq. ~1! and
performing a statistical average over the fluctuations, we
rive at the mean-field equation of motion forfav(t): f̈av

5@123^df2&#fav2fav
3 , where^df2& is the two-point cor-

relation function att50 and depends linearly on the tem
peratureT. Thus,fav(t) starts atf521 and oscillates an
harmonically in the left-hand well of an effective doubl
well potential, with minima atf656A123^df2&. This
mean-field approximation works very well at describing t
evolution of fav(t) at temperatures sufficiently far fromTc
~c.f. T50.1 in Fig. 1!. It also giveŝ f&T'f2 to within 4%
even at the highest temperatures we considered.

We now examine the behavior of small fluctuations ab
fav(t). Linearizing Eq.~1! with respect todf(x,t) and tak-
ing the Fourier transform we obtain~for k.0)

d̈f~k,t !1@k21Vdw9 „fav~ t !…# df~k,t !50. ~3!

Equations of this type, generalized Mathieu equations,
known to exhibit parametric resonance, which can lead
exponential amplification (;expht) in the oscillations of
df(k,t) at certain wavelengths, in response to the tim
dependent harmonic term. These equations have bee
great interest in reheating studies of inflationary cosmolog
@13#. To verify that this is the mechanism behind the sy
chronous amplification of oscillon modes early in the sim
lations, we use in Eq.~3! the anharmonic solution forfav(t)
obtained in the mean-field approximation above.

Figure 4 shows lines of constant amplification rateh of
the fluctuationsdf(k,t) for variousk andT. At low tempera-
tures,T,0.165, no modes are ever amplified. As the te
perature is increased, so is the amplitude of oscillation
fav(t), eventually causing the band 0.6&k&0.9 to resonate
We note that the characteristic wave number of oscillon c
figurations iskosc52/R0 @5#. Using the result in Fig. 3 for the
average configuration radiusR052.86, we obtainkosc.0.7.
From Fig. 4, modes withkosc.0.7 are excited forT*0.18,
the temperatures above which we see the synchronized e
gence of oscillons. ForT.0.22, a second band of longe
wavelength modes becomes excited as well, signaling
onset of criticality. These general results corroborate our
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lier findings: for temperatures 0.185&T&0.25, oscillations
of the zero-mode drive, via parametric resonance, amplifi
tion of the modes comprising oscillon configurations, ul
mately leading to the usual breakdown of the linear appro
mation. The growth of these modes corresponds to la
amplitude fluctuations that probe the unstable regions of
potential (]2V/]f2,0), which coordinate to form the ob
served coherent structures.

Finally, we introduce a measure of the partitioning of t
kinetic energyP(t), which we use to describe the nonequ
librium evolution of the system:

P~ t !52E d2kp~k,t !ln p~k,t !, ~4!

wherep(k,t)5K(k,t)/*d2kK(k,t) andK(k,t) is the kinetic
energy of thekth mode.P(t) attains its maximum@Pmax
5ln(N) on a lattice withN degrees of freedom# when equi-
partition is satisfied. This occurs both at the initial therma
zation (t50) and final equilibrium states, since in this ca
all modes carry the same fractional kinetic energy. In Fig
we show the change ofP(t) from the initial state,P(t
50)2P(t), for the closed system atT50.2. At late times
(t*150), we have found that the system equilibrates ex

FIG. 4. Lines of constant amplification rate for small-amplitu
modes at various temperatures, beginning withh21.27 for the
bottom-most contour and increasing in increments ofdh50.05.

FIG. 5. The change ofP(t) from the initial state for closed
systems atT50.2. The exponential approach to equilibrium is cle
z at late times. The inset illustrates the role of oscillons as a bo
neck to equipartition.
3-3
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nentially in a time scalet.500. At early times, the localiza
tion of energy at lowerk modes, corresponding to the glob
emergence of oscillons, prolongs this approach to equip
tion. The inset of Fig. 5 shows the large variations inP(t)
~dotted line! that arise due to the synchronous oscillations
the kinetic energy of these configurations. Also shown~solid
line! is the average between successive peaks ofP(t), with
a plateau at 20&t&70 that coincides with the maximum os
cillon presence in the system. Thus, oscillon configurati
serve as early bottlenecks to equipartition, temporarily s
pressing the diffusion of energy from low~0,uku&0.8! to
higher modes.
n

v.
v.

ci.
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We have investigated the nonequilibrium evolution of
scalar field with a double-well potential. For a range of te
peratures, the approach to equilibrium is characterized
three stages: first, the synchronized emergence of oscill
second, the loss of the initial synchronicity, but the pers
tence of oscillons; and third, their disappearance as the
tem approaches equipartition. It would be interesting to
vestigate the possibility of controlling the duration of th
synchronization stage and search for this emergent beha
in laboratory systems, ranging from vibrating grains to f
romagnetic materials.
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